Benha University
Faculty of Engineering at Shoubra
Electrical Engineering Department

Electromagnetic Fundamentals $2^{\text {nd }}$ Year Communications
(2016-2017)

Sheet 9

1 Two perfectly conducting spherical surfaces located at $r=2$ and $r=10 \mathrm{~cm}$, the total current passing radically outward through the medium between the spheres is 2.5 A
(a) Find the voltage and resistance between the spheres, and \bar{E} in the region between the spheres, if a conducting material having $\sigma=0.02 \Omega^{-1} / \mathrm{m}$ is present for $2<r<10 \mathrm{~cm}$.
(b) Repeat if $\sigma=\frac{0.001}{r}(\Omega \mathrm{~m})^{-1}$ for $2<r<10 \mathrm{~cm}$

$$
\left[\begin{array}{c}
V_{a b}=397.88 \mathrm{~V}, R=159.155 \Omega, \bar{E}=\frac{397.88}{r^{2}} \bar{a}_{r} \quad \mathrm{~V} / \mathrm{m} \\
V_{a b}=320.1875 \mathrm{~V}, \\
\hline 128.0745 \Omega, \bar{E}=\frac{198.943}{r} \bar{a}_{r} \quad \mathrm{~V} / \mathrm{m}
\end{array}\right]
$$

2 Find the resistance between the inner and outer curved surfaces of the block shown figure

$$
[R=10.058 \mu \Omega]
$$

3 The potential $V=2 x^{2}+4 y-2 z^{2}$ volts exists in free surrounding a perfectly conducting surface. Point $(4,3,2)$ lies on the surface.
(a) Give the equation of the surface and f
(b) Find the unit vector normal to the surface at P
(c) Find ρ_{s} at point P

$$
\left[2 x^{2}+4 y-2 z^{2}=36, \quad \bar{a}_{E}=\frac{-4 \bar{a}_{x}-\bar{a}_{y}+2 \bar{a}_{z}}{\sqrt{21}}, \quad \rho_{s}=0.162 \mathrm{nC} / \mathrm{m}^{2}\right]
$$

4 Given the potential $\boldsymbol{V}=\left(\mathbf{2 0 0} / \boldsymbol{r}^{\mathbf{2}}\right) \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}$ volts
(a) Find the equation of the conducting surface on which $V=100$ volts
(b) Find the electric field at point $\left(r, 30^{\circ}, 30^{\circ}\right)$ on the conducting surface
(c) Find ρ_{s} at point P

$$
\left[\begin{array}{c}
1=\left(\frac{2}{r^{2}}\right) \sin \theta \cos \phi \\
\bar{E}=248.646\left(\frac{\sqrt{3}}{2} \bar{a}_{r}-\frac{3}{4} \bar{a}_{\theta}+\frac{1}{2} \bar{a}_{\phi}\right) \\
\rho_{s}=2.75 n C / m^{2}
\end{array}\right]
$$

5 Derive an expression for the electric field intensity of the electric dipole. Sketch the field mapping using streamlines equation

6 Explain the "Method of images" showing how this method had been inspired by the electric dipole

7 For a point charge $Q=25 \mathrm{nC}$ lies at $(3,4,6)$
(a) Find \bar{E} at $(2,1,0)$
(b) Find ρ_{s} at $(2,1,0)$ when a grounded conducting plate is places at $z=0$
(c) Find ρ_{s} at $(4,5,3)$ when the plate of (b) is moved to $z=3$

$$
\left[\begin{array}{c}
\bar{E}=-0.72 \bar{a}_{x}-2.16 \bar{a}_{y}-4.32 \bar{a}_{z} \\
\rho_{s}=0.076 \mathrm{nC} / \mathrm{m}^{2} \\
\rho_{s}=0.327 \mathrm{nC} / \mathrm{m}^{2}
\end{array}\right]
$$

8 The electric field intensity is given by $\bar{E}=5 e^{2 x}\left[\sin 2 y \quad \bar{a}_{x}-\cos 2 y \bar{a}_{y}\right]$
(a) Find the equation of the streamline through $P\left(0.5, \frac{\pi}{10}, 0\right)$
(b) Find a unit vector tangent to the streamline at P

$$
\left[\begin{array}{c}
\cos 2 y=0.353 e^{2 x} \\
\bar{a}_{E}=0.6 \bar{a}_{x}-0.8 \bar{a}_{y}
\end{array}\right]
$$

9 (a) If a finite line charge $\rho_{L}=25 \mathrm{nC} / \mathrm{m}$ is extended from $(3,4,3)$ to $(3,4,5)$ find the electric field at $(0,0,0)$
(b) If a grounded conducting plane is placed at $z=0$, find \bar{E} at $(0,0,0)$

10 An infinite line charge $\rho_{L}=20 \mathrm{nC} / \mathrm{m}$, is located at $x=0$ and $z=3$, find ρ_{s} at $(2,5,1)$ on a ground conducting plate placed at $z=1$

