

Electromagnetic Fundamentals 2ndYear Communications (2016-2017)

Sheet 9

- 1 Two perfectly conducting spherical surfaces located at r=2 and r=10 cm, the total current passing radically outward through the medium between the spheres is 2.5 A
 - (a) Find the voltage and resistance between the spheres, and \bar{E} in the region between the spheres, if a conducting material having $\sigma=0.02~\Omega^{-1}/\mathrm{m}$ is present for $2 < r < 10~\mathrm{cm}$.
 - (b) Repeat if $\sigma = \frac{0.001}{r} (\Omega \mathrm{m})^{\text{-1}}$ for $2 < r < 10~\mathrm{cm}$

$$\begin{bmatrix} V_{ab} = 397.88 \text{ V} & , & R = 159.155 \, \Omega & , & \overline{E} = \frac{397.88}{r^2} \, \overline{a}_r & \text{V/m} \\ V_{ab} = 320.1875 \, \text{V} & , & R = 128.0745 \, \Omega & , & \overline{E} = \frac{198.943}{r} \, \overline{a}_r & \text{V/m} \end{bmatrix}$$

2 Find the resistance between the inner and outer curved surfaces of the block shown figure

 $[R=10.058\,\mu\Omega]$

- The potential $V = 2x^2 + 4y 2z^2$ volts exists in free surrounding a perfectly conducting surface. Point (4,3,2) lies on the surface.
 - (a) Give the equation of the surface and f
 - (b) Find the unit vector normal to the surface at P
 - (c) Find $\rho_{\scriptscriptstyle S}$ at point P

$$\label{eq:continuous_equation} \left[2x^2 + 4y - 2z^2 = 36 \ , \ \overline{a}_E = \frac{-4\overline{a}_\chi - \overline{a}_y + 2\overline{a}_z}{\sqrt{21}} \ , \ \rho_S = 0.\,162 \ \text{nC/m}^2 \right]$$

4 Given the potential $V = (200/r^2) \sin \theta \cos \phi$ volts

- (a) Find the equation of the conducting surface on which V=100 volts
- (b) Find the electric field at point (r,30°,30°) on the conducting surface
- (c) Find ρ_s at point P

$$\begin{bmatrix} 1 = \left(\frac{2}{r^2}\right) \sin\theta \cos\phi \\ \overline{E} = 248.646 \left(\frac{\sqrt{3}}{2}\overline{a}_r - \frac{3}{4}\overline{a}_\theta + \frac{1}{2}\overline{a}_\phi\right) \\ \rho_s = 2.75 \ nC/m^2 \end{bmatrix}$$

- 5 Derive an expression for the electric field intensity of the electric dipole. Sketch the field mapping using streamlines equation
- 6 Explain the "Method of images" showing how this method had been inspired by the electric dipole
- 7 For a point charge Q=25 nC lies at (3,4,6)
 - (a) Find \overline{E} at (2,1,0)
 - (b) Find $ho_{\scriptscriptstyle S}$ at (2,1,0) when a grounded conducting plate is places at z=0
 - (c) Find $\rho_{\rm S}$ at (4,5,3) when the plate of (b) is moved to z=3

$$\begin{bmatrix} \overline{E} = -0.72 \ \overline{a}_x - 2.16 \ \overline{a}_y - 4.32 \ \overline{a}_z \\ \rho_s = 0.076 \ \text{nC/m}^2 \\ \rho_s = 0.327 \ \text{nC/m}^2 \end{bmatrix}$$

- 8 The electric field intensity is given by $\bar{E} = 5 e^{2x} [\sin 2y \ \bar{a}_x \cos 2y \ \bar{a}_y]$
 - (a) Find the equation of the streamline through P (0.5, $\frac{\pi}{10}$, 0)
 - (b) Find a unit vector tangent to the streamline at P

$$\begin{bmatrix} \cos 2y = 0.353 \ e^{2x} \\ \overline{a}_E = 0.6\overline{a}_x - 0.8\overline{a}_y \end{bmatrix}$$

- 9 (a) If a finite line charge $\rho_L=25\,$ nC/m is extended from (3,4,3) to (3,4,5) find the electric field at (0,0,0)
 - (b) If a grounded conducting plane is placed at z=0 , find \bar{E} at (0,0,0)
- 10 An infinite line charge $\rho_L=20\,$ nC/m , is located at $x=0\,$ and $z=3\,$, find ρ_s at (2,5,1) on a ground conducting plate placed at $z=1\,$